Abstract

Hexavalent chromium (Cr(VI)) was co-treated either with second cheese whey (SCW) or winery effluents (WE) using pilot-scale biological trickling filters in series under different operating conditions. Two pilot-scale filters in series using plastic support media were used in each case. The first filter (i.e., Cr-SCW-filter or Cr-WE-filter) aimed at Cr(VI) reduction and the partial removal of dissolved chemical oxygen demand (d-COD) from SCW or WE and was inoculated with indigenous microorganisms originating from industrial sludge. The second filter in series (i.e., SCW-filter or WE-filter) aimed at further d-COD removal and was inoculated with indigenous microorganisms that were isolated from SCW or WE. Various Cr(VI) (5–100 mg L−1) and SCW or WE (d-COD, 1000–25,000 mg L−1) feed concentrations were tested. Based on the experimental results, the sequencing batch reactor operating mode with recirculation of 0.5 L min−1 proved very efficient since it led to complete Cr(VI) reduction in the first filter in series and achieved high Cr(VI) reduction rates (up to 36 and 43 mg L−1 d−1, for SCW and WW, respectively). Percentage d-COD removal for SCW and WE in the first filter was rather low, ranging from 14 to 42.5% and from 4 to 29% in the Cr-SCW-filter and Cr-WE-filter, respectively. However, the addition of the second filter in series enhanced total d-COD removal to above 97% and 90.5% for SCW and WE, respectively. The above results indicate that agro-industrial wastewater could be used as a carbon source for Cr(VI) reduction, while the use of two trickling filters in series could effectively treat both industrial and agro-industrial wastewaters with very low installation and operational costs.

Highlights

  • Nowadays, the removal of inorganic and organic pollutants from industrial/agro-industrial wastewaters remains a huge challenge, leading to an important problem in the field of wastewater purification [1].Chromium has found a wide range of applications and under normal conditions exists in two stable oxidation states: hexavalent (Cr(VI)) and trivalent (Cr(III))

  • The effect of second cheese whey (SCW) or winery effluents (WE) on Cr(VI) reduction was examined in an attached growth system (Cr-SCW-biofilter or Cr-WE-biofilter) under various operating conditions

  • The post-treatment of the treated wastewater was examined in a second biofilter that was connected in series (SCW-biofilter or WE-biofilter) to further reduce the organic load

Read more

Summary

Introduction

The removal of inorganic (heavy metals, such as Cr, Pb, and Cd) and organic pollutants (proteins, carbohydrates, fats, and nucleic acids) from industrial/agro-industrial wastewaters remains a huge challenge, leading to an important problem in the field of wastewater purification [1]. Chromium has found a wide range of applications and under normal conditions exists in two stable oxidation states: hexavalent (Cr(VI)) and trivalent (Cr(III)). Water 2018, 10, 382 the environment than Cr(III). Cr(III) has low solubility in water (

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.