Abstract

Tomatoes are grown for fresh consumption or for processing of the fruit. Some ripening-associated processes of the fruit can either contribute to or degrade attributes associated with both fresh and processing quality. For example, cell wall disassembly is associated with loss of fresh fruit firmness as well as with loss of processed tomato product viscosity. Several enzymes contribute to cell wall polysaccharide disassembly. Polygalacturonase (PG, poly[1,4-alpha-d-galactouronide] glucanohydrolase, EC 3.2.1.15) is among the most abundant polysaccharide hydrolases in ripening tomato fruit and is the major contributor to pectin depolymerization. Expansin (LeExp1) is also abundant in ripening fruit and is proposed to contribute to cell wall disassembly by nonhydrolytic activity, possibly by increasing substrate accessibility to other enzymes. Suppression of either LePG or LeExp1 expression alone results in altered softening and/or shelf life characteristics. To test whether simultaneous suppression of both LePG and LeExp1 expression influences fruit texture in additive or synergistic ways, transgenic Lycopersicon esculentum var. Ailsa Craig lines with reduced expression of either LePG or LeExp1 were crossed. Fruits from the third generation of progeny, homozygous for both transgenic constructs, were analyzed for firmness and other quality traits during ripening on or off the vine. In field-grown transgenic tomato fruit, suppression of LeExp1 or LePG alone did not significantly increase fruit firmness. However, fruits suppressed for both LePG and LeExp1 expression were significantly firmer throughout ripening and were less susceptible to deterioration during long-term storage. Juice prepared from the transgenic tomato fruit with reduced LePG and LeExp1 expression was more viscous than juice prepared from control fruit.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call