Abstract

Electrospun poly(vinyl alcohol)-(PVA)-poly(acrylic acid) (PAA)/carbon nanotubes(CNTs)-cellulose nanocrystal (CNC) (PVA-PAA/CNT-CNC) composite nanofibers were prepared and characterized using Fourier transform-infrared spectroscopy and field emission scanning electron microscopy. The resultant composite was used as an effective and novel sorbent for pipette-tip micro-solid phase extraction (PT-μSPE) of seven opioid analgesics (OAs) in biological samples followed by HPLC-UV analysis. Addition of CNT-CNC with the high specific surface area and plenty of OH-functional groups endows the nanofibers with considerable extraction efficiency. Under the optimum conditions, the linearity was obtained in the range 1.5 to 700.0ngmL-1 for morphine, codeine, oxycodone, and tramadol, and 0.5 to 1000.0ngmL-1 for nalbuphine, thebaine, and noscapine with coefficient of determination (r2) ≥ 0.9990. Detection limits (LODs) based on S/N = 3 were in the range of 0.15-0.50ngmL-1. The relative standard deviations (RSDs) of4.1-5.4% (intra-day, n = 5) and 5.2-6.4% (inter-day, n = 3) for three consecutive dayswere achieved. Finally, the efficiency of the PT-μSPE-HPLC-UV method was evaluated for the determination of OAs in human plasma and urine samples with good recoveries (87.3 to 97.8%). A: Schematic illustration for the preparation of PVA-PAA/CNT-CNC composite nanofibers. B: Schematic presentation of applying PVA-PAA/CNT-CNC composite nanofibers as the sorbent in pipette-tip micro solid-phase extraction (PT-μSPE) for the preconcentration of seven opioid analgesic drugs in biological samples before HPLC-UV analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call