Abstract

Determining the landscape of specific binding sites on biological samples with high spatial accuracy (in the order of several nanometres) is an important task in many fields of biological science. During the past five years, dynamic recognition imaging (e.g. simultaneous topography and recognition (TREC) imaging) has proven to be a powerful technique in biophysical research. This technique becomes an indispensable tool for high-resolution receptor mapping as it has been successfully demonstrated on different biomolecular model systems. In these studies, the topographical imaging of receptor molecules is combined with molecular recognition by their cognate ligands bound to the atomic force microscope (AFM) tip via a flexible and distensible tether. In this review, we describe the principles of TREC imaging and provide a flavour of its recent application on endothelial cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call