Abstract

Studies of temporal behaviors of protein association in living cells are crucially important for elucidating the fundamental roles and the mechanism of interactive coordination for cell activities. We developed a method for investigating the temporal alternation of a particular protein assembly using monomeric fluorescent proteins, fluorescent timers (FTs), of which the fluorescent color changes from blue to red over time. We identified a dissection site of the FTs, which allows complementation of the split FT fragments. The split fragments of each FT variant recovered their fluorescence and maintained inherent rates of the color changes upon the reassembly of the fragments in vitro. We applied this method to visualize the aggregation process of α-synuclein in living cells. The size of the aggregates with the temporal information was analyzed from ratio values of the blue and red fluorescence of the reconstituted FTs, from which the aggregation rates were evaluated. This method using the split FT fragments enables tracing and visualizing temporal alternations of various protein associations by single fluorescence measurements at a given time point.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.