Abstract

Control scheme facilitated either in the time- or frequency-domain alone is insufficient in controlling route-to-chaos, where the corresponding response deteriorates in the time and frequency domains simultaneously. A novel chaos control scheme is formulated by addressing the fundamental characteristics inherent of chaotic response. The proposed control scheme has its philosophical basis established in simultaneous time–frequency control, on-line system identification, and adaptive control. Physical features that embody the concept include multiresolution analysis, adaptive Finite Impulse Response (FIR) filter, and Filtered-x Least Mean Square (FXLMS) algorithm. A non-stationary Duffing oscillator is investigated to demonstrate the effectiveness of the control methodology. Results presented herein indicate that for the control of dynamic instability including chaos to be deemed viable, mitigation has to be adaptive and engaged in the time and frequency domains at the same time.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call