Abstract
BackgroundNeurodegenerative diseases (NDDs) pose significant challenges due to their debilitating nature and limited therapeutic options. Accurate and timely diagnosis is crucial for optimizing patient care and treatment strategies. Gait analysis, utilizing wearable sensors, has shown promise in assessing motor abnormalities associated with NDDs. Research questionResearch Question 1 To what extent can analyzing the interaction of both limbs in the time-frequency domain serve as a suitable methodology for accurately classifying NDDs?Research Question 2 How effective is the utilization of color-coded images, in conjunction with deep transfer learning models, for the classification of NDDs? MethodsGaitNDD database was used, comprising recordings from patients with Huntington’s disease, amyotrophic lateral sclerosis, Parkinson’s disease, and healthy controls. The gait signals underwent signal preparation, wavelet coherence analysis, and principal component analysis for feature enhancement. Deep transfer learning models (AlexNet, GoogLeNet, SqueezeNet) were employed for classification. Performance metrics, including accuracy, sensitivity, specificity, precision, and F1 score, were evaluated using 5-fold cross-validation. ResultsThe classification performance of the models varied depending on the time window used. For 5-second gait signal segments, AlexNet achieved an accuracy of 95.91 %, while GoogLeNet and SqueezeNet achieved accuracies of 96.49 % and 92.73 %, respectively. For 10-second segments, AlexNet outperformed other models with an accuracy of 99.20 %, while GoogLeNet and SqueezeNet achieved accuracies of 96.75 % and 95.00 %, respectively. Statistical tests confirmed the significance of the extracted features, indicating their discriminative power for classification. SignificanceThe proposed method demonstrated superior performance compared to previous studies, offering a non-invasive and cost-effective approach for the automated diagnosis of NDDs. By analyzing the interaction between both legs during walking using wavelet coherence, and utilizing deep transfer learning models, accurate classification of NDDs was achieved.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.