Abstract
The three deformation components x, y, z of a vibrating object are measured simultaneously by use of digital holography with a double-pulse ruby laser source. The object is illuminated from three different directions, each optically path matched with three reference beams such that three independent digital holograms are formed and added incoherently in one single CCD image. The optical phase difference between the two recordings taken for each hologram is quantitatively evaluated by the Fourier-transform method so that a set of three phase maps is obtained, representing the deformation along three sensitivity vectors. The total object deformation is obtained as a vector resultant from the data of the three phase maps. To give the full three-dimensional (3-D) description, the shape of the object is measured by the two-wavelength contouring method. Experiments are performed with a cylinder as the test object, transiently and harmonically excited. The 3-D deformation and shape measurement results are presented graphically.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.