Abstract

A novel fiber sensor capable of simultaneously measuring force and temperature is proposed and investigated. A section of high-index-fluid-filled photonic bandgap fiber (HIFF-PBGF) is inserted in a fiber loop to act as the sensing head. Photonic bandgap effect of the HIFF-PBGF as well as Fabry-Perot interferometer (FPI) introduced by controlling the splicing between the HIFF-PBGF and single mode fiber is used for achieving force and temperature discrimination. Taking advantage of the bandgap being high sensitivity to the temperature, a high temperature sensitivity of more than -1.94 dB/°C is achieved, which is the highest based on the intensity measurement, to our best knowledge. Meanwhile, a force sensitivity of 3.25 nm/N (~3.9 pm/με) is obtained, which could be enhanced by controlling the FPI shape. The device also has the strong points of easy fabrication, compact structure and high interference fringe contrast.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.