Abstract

A new telemetry system for simultaneous detection of extracellular brain glucose and lactate and motion is presented. The device consists of dual-channel, single-supply miniature potentiostat-I/V converter, a microcontroller unit, a signal transmitter, and a miniaturized microvibration sensor. Although based on simple and inexpensive components, the biotelemetry device has been used for accurate transduction of the anodic oxidation currents generated on the surface of implanted glucose and lactate biosensors and animal microvibrations. The device was characterized and validated in vitro before in vivo experiments. The biosensors were implanted in the striatum of freely moving animals and the biotelemetric device was fixed to the animal's head. Physiological and pharmacological stimulations were given in order to induce striatal neural activation and to modify the motor behavior in awake, untethered animals.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call