Abstract

An LC-MS based analytical method was developed and validated for the simultaneous targeted analysis and suspect screening of plastic-related contaminants in e-waste impacted soils. Satisfactory recoveries (97 ± 13 %) were achieved using ultrasound-assisted extraction for 14/15 of the targeted analytes (7 bisphenols and 8 plasticizers) in a range of agricultural and non-agricultural soils. The method was applied to 53 soil samples collected in May 2015 in the region of Agbogbloshie (Ghana) at e-waste facilities (incl. Dump, trade, and burn sites), neighboring non-agricultural (incl. upstream, downstream, and community) and agricultural fields, and at two control agricultural sites away from e-waste recycling facilities. Bisphenol A (BPA) and bis(2-ethylhexyl) phthalate (DEHP) were the two dominant contaminants in e-waste soil (with concentrations up to 48.7 and 184 μg g−1, respectively), especially at the trade site, where e-waste was sorted and dismantled. The non-targeted workflow was successfully applied to identify additional plastic-related contaminants previously unreported in e-waste impacted soils, including bis(2-propylheptyl) phthalate, diisononyl phthalate, trioctyl trimellitate, 4-dodecylbenzenesulfonic acid, perfluorooctanesulfonic acid, perfluorobutanesulfonic acid, diphenyl phosphate, and triethylene glycol monobutyl ether. The agricultural soils surrounding the e-waste sites were also contaminated by plastic-related chemicals (especially DEHP), highlighting the impact of e-waste activities on the surrounding agricultural system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.