Abstract

In this study, we propose a method to identify the type of target and simultaneously determine its moving direction in a millimeter-wave radar system. First, using a frequency-modulated continuous wave (FMCW) radar sensor with the center frequency of 62 GHz, radar sensor data for a pedestrian, a cyclist, and a car are obtained in the test field. Then, a You Only Look Once (YOLO)-based network is trained with the sensor data to perform simultaneous target classification and moving direction estimation. To generate input data suitable for the deep learning-based classifier, a method of converting the radar detection result into an image form is also proposed. With the proposed method, we can identify the type of each target and its direction of movement with an accuracy of over 95%. Moreover, the pre-trained classifier shows an identification accuracy of 85% even for newly acquired data that have not been used for training.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.