Abstract

AbstractThe all‐inorganic metal halide perovskite CsPbX3 (X = Cl, Br, and I) has received extensive attention in the field of white light‐emitting diodes (WLEDs) due to its high luminous intensity and high color purity. However, the shortcoming of poor stability directly affects the luminous performance of the WLED devices and reduces their luminous efficiency, which has become an urgent problem to be solved. Here, three‐color lead halide perovskite phosphors (blue‐emitting CsPbBr3 synthesized at 20 °C (CPB‐20), green‐emitting CsPbBr3‐80 (CPB‐80)/CsPbBr3:SCN−(CPB:SCN−), and red‐emitting PEA2PbBr4 (PPB)/PEA2PbBr4:Mn2+ (PPB:Mn2+)) with higher stability and luminous intensity are simultaneously prepared and applied in WLEDs. Density functional theory is used to optimize the structures of CsPbBr3 and PEA2PbBr4, and to calculate the work function, optical properties, and charge density difference. Not only the WLED devices with three‐color lead halide perovskite phosphors are constructed, but also WLED devices from warm white to cold white are realized by tuning the ratio of the different emissions, and a superior color quality (color rendering index of 96) and ideal correlated color temperature (CCT of 9376 K) are achieved. This work will set the stage for exploring low‐cost, environmentally friendly, high‐performance WLEDs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call