Abstract

This paper handles the simultaneous suppression of narrow-band and multiaccess interference in asynchronous CDMA networks. We consider both linear one-shot detection and block-detection, showing that, in both cases, the presence of an external narrow-band interferer generally results in the need for time-varying processing. As to the linear one-shot detectors, we derive both a zero-forcing and a minimum mean square error detector, showing that they are members of an only family, wherein the optimization criterion is the constrained minimization of a suitably defined output interference energy. We also present a comparative performance assessment between the various detection strategies, studying the impact of both the optimization criterion and other system parameters, such as the oversampling ratio and the length of the observation window. We also handle the problem of blind and adaptive detection. At first we show that the linear one-shot receivers are readily amenable to a blind implementation, upon off-line estimation of the covariance matrix of the observables. Next, we consider the problem of an adaptive implementation of a periodically time-varying minimum mean square error receiver, introducing and assessing a new cyclic recursive least squares (RLS) algorithm: we show that, unlike the conventional RLS algorithms, the new algorithm is capable of tracking the periodically time-varying variation of the receiver structure, induced by the presence of a data-like narrow-band interferer.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call