Abstract

Multi-modality magnetic resonance imaging (MRI) has enabled significant progress to both clinical diagnosis and medical research. Applications range from differential diagnosis to novel insights into disease mechanisms and phenotypes. However, there exist many practical scenarios where acquiring high-quality multi-modality MRI is restricted, for instance, owing to limited scanning time. This imposes constraints on multi-modality MRI processing tools, e.g., segmentation and registration. Such limitations are not only recurrent in prospective data acquisition but also when dealing with existing databases with either missing or low-quality imaging data. In this work, we explore the problem of synthesizing high-resolution images corresponding to one MRI modality from a low-resolution image of another MRI modality of the same subject. This is achieved by introducing the cross-modality dictionary learning scheme and a patch-based globally redundant model based on sparse representations. We use high-frequency multi-modality image features to train dictionary pairs, which are robust, compact, and correlated in this multimodal feature space. A feature clustering step is integrated into the reconstruction framework speeding up the search involved in the reconstruction process. Images are partitioned into a set of overlapping patches to maintain the consistency between neighboring pixels and increase speed further. Extensive experimental validations on two multi-modality databases of real brain MR images show that the proposed method outperforms state-of-the-art algorithms in two challenging tasks: image super-resolution and simultaneous SR and cross-modality synthesis. Our method was assessed on both healthy subjects and patients suffering from schizophrenia with excellent results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.