Abstract

High resolution three-dimensional (3D) magnetic resonance (MR) images are well suited for automated cartilage segmentation in the human knee joint. However, volumetric scans such as 3D Double-Echo Steady-State (DESS) images are not routinely acquired in clinical practice which limits opportunities for reliable cartilage segmentation using (fully) automated algorithms. In this work, a method for generating synthetic 3D MR (syn3D-DESS) images with better contrast and higher spatial resolution from routine, low resolution, two-dimensional (2D) Turbo-Spin Echo (TSE) clinical knee scans is proposed. A UNet convolutional neural network is employed for synthesizing enhanced artificial MR images suitable for automated knee cartilage segmentation. Training of the model was performed on a large, publically available dataset from the OAI, consisting of 578 MR examinations of knee joints from 102 healthy individuals and patients with knee osteoarthritis. The generated synthetic images have higher spatial resolution and better tissue contrast than the original 2D TSE, which allow high quality automated 3D segmentations of the cartilage. The proposed approach was evaluated on a separate set of MR images from 88 subjects with manual cartilage segmentations. It provided a significant improvement in automated segmentation of knee cartilages when using the syn3D-DESS images compared to the original 2D TSE images. The proposed method can successfully synthesize 3D DESS images from 2D TSE images to provide images suitable for automated cartilage segmentation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.