Abstract

The basic structures of membrane lipids that compose biomembranes differ among species; i.e., in mammals, the primary structure of long-chain base (LCB), the common backbone of ceramides and complex sphingolipids, is sphingosine, whereas, in yeast Saccharomyces cerevisiae, it is phytosphingosine, and S. cerevisiae does not have sphingosine. In addition, the sterol, which is coordinately involved in various functions with complex sphingolipids, is cholesterol in mammals, while in yeast it is ergosterol. Previously, it was found that yeast cells are viable when the structure of LCBs is replaced by sphingosine by supplying an exogenous LCB to cells lacking LCB biosynthesis. Here, we characterized yeast cells having sphingosine instead of phytosphingosine (sphingosine cells). Sphingosine cells exhibited a strong growth defect when biosynthesis of ceramides or complex sphingolipids was inhibited, indicating that, in the sphingosine cells, exogenously added sphingosine is required to be further metabolized. The sphingosine cells exhibited hypersensitivity to various environmental stresses and had abnormal plasma membrane and cell wall properties. Furthermore, we also established a method for simultaneous replacement of both LCB and sterol structures with those of mammals (sphingosine/cholesterol cells). The multiple stress hypersensitivity and abnormal plasma membrane and cell wall properties observed in sphingosine cells were also observed in sphingosine/cholesterol cells, suggesting that simultaneous replacement of both LCB and sterol structures with those of mammals cannot prevent these abnormal phenotypes. This is the first study to our knowledge showing that S.cerevisiae can grow even if LCB and sterol structures are simultaneously replaced with mammalian types.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call