Abstract

Inspired by the lignin-cellulose network in natural wood, we developed a strategy to produce cellulose nanofibril (CNF) composite films using lignin nanoparticles (LNPs) with varied contents of phenolic hydroxyl (Ph-OH) groups as a reinforcing agent. Regulated LNPs with lower molecular weight, higher Ph-OH content, and uniform morphology were successfully prepared by phenolation and anti-solvent precipitation. CNFs mixed with phenolated LNPs of high Ph-OH content (8.23 mmol/g) exhibited a higher tensile strength (∼190 MPa), increased toughness (∼15 MJ/m3), and enhanced UV-blocking ability (∼99 %) compared to lignin-free CNFs and CNF composites with lower Ph-OH content. Thus, hydrogen bonds between Ph-OH groups on lignin and hydroxyl groups on CNFs are vital for enhancing the mechanical strength of composite films. Similar enhanced mechanical properties were found by adding phenolated LNPs into polyvinyl alcohol as a fortifier. This study provides novel insights into producing lignin-reinforced cellulose composite films with UV shielding, thermal stability, and biodegradability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.