Abstract
In this work, a fiber Bragg grating (FBG) sensor network inscribed in a polarization-maintaining (PM) fiber is proposed to proceed with a multipoint simultaneous temperature and strain discrimination in different locations (positive and negative terminals, and middle) on a cylindrical Li-ion battery. The birefringence property of the PM fibers, together with FBG sensors, allowed such an application using only one fiber line fixed to the edges of the battery. The battery was subjected to two different charge/discharge cycles, one with nominal charging and discharging conditions (1.00 C and 1.13 C, respectively) and another with abusive conditions (1.88 C for charge and 2.39 C for discharge). The PM-FBG sensors registered maximum temperature and strain variations at the end of the abusive discharge process of the battery; the positive terminal achieved a 28.7 ± 0.3 °C temperature variation, while the center achieved 221 ± 10 με strain variation. The results indicate a different strain variation behavior in the middle location when compared to the negative and positive terminals, as well as a higher temperature variation in both terminals when compared to the middle location. The use of PM-FBG sensors successfully demonstrates their feasibility in locally tracking and discriminating strain and temperature shifts in a battery surface. To our knowledge, this is the first study using the application of PM-FBG sensors to monitor and discriminate critical safety parameters in Li-ion batteries.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.