Abstract

Statistical inference methodology in dynamic factor models (DFMs) is extended to the multiple testing context based on a central limit theorem for empirical Fourier transforms of multivariate time series. This theoretical result allows for employing a vector of Wald-type test statistics which asymptotically follows a multivariate chi-square distribution under the global null hypothesis when the observation horizon tends to infinity. Multiplicity-adjusted asymptotic multiple test procedures based on Wald statistics are compared with a model-based bootstrap procedure proposed in recent previous work. Monte Carlo simulations demonstrate that both the asymptotic multiple chi-square test with an appropriate multiplicity adjustment and the bootstrap-based multiple test procedure keep the family-wise error rate approximately at the predefined significance level. The estimation algorithm as well as the implementation of the testing procedures are described in detail and a real-life application is performed on European commodity data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.