Abstract

When the properties of soft materials evolve in time, the simultaneous measurement of different characteristics is critical. Here, we demonstrate an experimental system that permits monitoring both the spatial and temporal evolution of the optical and mechanical properties. An integrated fiber-optic-based system allows determining the mechanical vibrations of structural elements over 5 orders of magnitude and over a broad frequency range. At the same time, the optical properties can be obtained within seconds from high-resolution measurements of the path-length distribution of reflected light. With proper cyclical scanning, the temporal evolution of the mesoscopic light scattering properties can be obtained in a depth-resolved manner. The performance of this integrated measurement is validated in the particular case of drying paint films. For these typical nonstationary media, we show how our approach provides unique access to the spatiotemporal material properties and how this information permits identifying the specific stages of structural evolution.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call