Abstract

Single-pixel imaging can capture images using a detector without spatial resolution, which enables imaging in various situations that are challenging or impossible with conventional pixelated detectors. Here we report a compressive single-pixel imaging approach that can simultaneously encode and recover spatial, spectral, and 3D information of the object. In this approach, we modulate and condense the object information in the Fourier space and detect the light signals using a single-pixel detector. The data-compressing operation is similar to conventional compression algorithms that selectively store the largest coefficients of a transform domain. In our implementation, we selectively sample the largest Fourier coefficients, and no iterative optimization process is needed in the recovery process. We demonstrate an 88% compression ratio for producing a high-quality full-color 3D image. The reported approach provides a solution for information multiplexing in single-pixel imaging settings. It may also generate new insights for developing multi-modality computational imaging systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call