Abstract

The positioning of a plane specular sample to be measured or processed is an important requirement in many fields of research and industry. Where a sample is to be processed either by electromagnetic waves or a particle beam of higher numerical aperture the irradiance or the particle number over unit area is position and angle dependent. Where optical properties of a sample are to be measured, such as in spectrophotometry, these parameters can depend on the angle of incidence and on the value of the irradiance, i.e. on the angular and spatial position of the sample. In some cases parameters of many samples have to be compared among each other or to those of a standard, this also requires the highly accurate positioning of each sample to the same position. This paper describes a method that is suitable for high accuracy alignment of specular plane samples both angularly and spatially. It applies a double beam triangulation probe, where the second beam serves not only as a reference beam to compensate for any changes of the transmitting media and that of the laser but also doubles the sensitivity of the probe. The method does not compete with interferometric methods, it is required only in special applications, but provides an absolute uncertainty for spatial positioning in the sub-micrometer range and an angular one in the 0.0003° range. Furthermore, the accuracy is tunable by the parameters of the setup.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.