Abstract

Disposal of sewage sludge creates the potential for heavy metal accumulation in theenvironment. This study assessed nine soils currently used as Dedicated Land Disposal units(DLDs) for treatment and disposal of municipal sewage sludge in the vicinity of Sacramento,California. Adsorption characteristics of these soils for Cd, Cu, Ni, Zn, Pb, and Cr were studiedby simultaneously mixing these elements in the range of 0-50 µmol L-1 with sludgesupernatant and reacting with the soil using a soil:supernatant ratio of 1:30, pH = 4.5 or 6.5, andconstant ionic strength (0.01 M Na-acetate). The concentration of metals in the supernatant wasdetermined after a 24 hr equilibration period. Adsorption isotherms showed that metal sorptionwas linearly related to its concentration in the supernatant solution. The distribution coefficientKd (Kd = concentration on solid phase/concentration in solution phase) was computed as theslope of the sorption isotherm. The distribution coefficients were significantly correlated to soilorganic matter content for Ni, Cu, Cd, and Pb at pH 4.5 and for Ni, Cu, Zn, and Cd at pH 6.5.There was also a correlation between Kd and soil specific surface area but no relationship to othersoil properties such as CEC, clay content, and noncrystalline Fe and Al materials. Therefore, soilorganic carbon and surface area appear to be the most important soil properties influencing metaladsorption through formation of organo-metal complexes. The Kd values for all elements werehigher at pH 6.5 than at 4.5. Selectivity between metals resulted in the following metal affinitiesbased on their Kd values: Pb>Cu>Zn>Ni>Cd≈Cr at pH 4.5 andPb>Cu≈Zn>Cd>Ni>Cr at pH 6.5.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call