Abstract

The low MR sensitivity of the sodium nucleus and its low concentration in the human body constrain acquisition time. The use of both single-quantum and triple-quantum sodium imaging is, therefore, restricted. In this work, we present a novel MRI sequence that interleaves an ultra-short echo time radial projection readout into the three-pulse triple-quantum preparation. This allows for simultaneous acquisition of tissue sodium concentration weighted as well as triple-quantum filtered images. Performance of the sequence is shown on phantoms. The method is demonstrated on six healthy informed volunteers and is applied to three cases of brain tumors. A comparison with images from tumor specific O-(2-[18F]fluoroethyl)-L-tyrosine positron emission tomography and standard MR images is presented. The combined information of the triple-quantum-filtered images with single-quantum images may enable a better understanding of tissue viability. Future studies can benefit from the evaluation of both contrasts with shortened acquisition times.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.