Abstract
We present a method for performing intracerebral microdialysis in freely behaving rats while recording the firing of neurons within the dialysis site. Studying hippocampal theta cells and complex-spike cells with this technique, it has been found that: (1) when the microdialysis fluid contained only artificial cerebrospinal fluid, both types of neurons displayed normal electrical activity, (2) the simultaneous single-cell recording/microdialysis procedure could be readily performed for as long as 3 days, and (3) inclusion of drugs into the microdialysis fluid, at appropriate concentrations, caused clear changes in firing pattern. For example, microdialysis with 1% lidocaine completely abolished, whereas that with 50 mM K + markedly increased, the neuronal electrical activity. These cellular changes developed without apparent EEG or behavioral manifestations and were reversible. In some of the experiments, the extracellular concentrations of glutamate and aspartate in the recording/dialysis site were also measured. The described method allows the extracellular environment of recorded brain cells to be manipulated by drugs delivered through the microdialysis probe and simultaneously allows determination of the neurochemical composition of that environment over a remarkably long period of time and in intact, physiologically functioning, neural networks. Such studies will provide new insights into the molecular basis of neuronal activity in the brain in the context of behavior, including learning.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.