Abstract

Thin film photovoltaic (PV) devices and modules prepared by commercial processes can be severely compromised by through-device low resistance electrical pathways. The defects can be due to thin or missing semiconductor material, metal diffusion along grain boundaries, or areas containing diodes with low turn-on potentials. We report the use of single wall carbon nanotube (SWCNT) layers to enable both protection against these defects and back contact formation for CdTe PV devices. Samples prepared with a SWCNT back contact exhibited good efficiency and did not require shunt protection, while devices prepared without shunt protection using a standard metal back contact performed poorly. We describe the mechanism by which the SWCNT layer functions. In addition to avoiding the need for shunt protection by other means, the SWCNT film also provides a route to higher short circuit currents.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.