Abstract

The residues of nitrogen contaminants due to insufficient organic carbon sources in sewage has always been the main problem faced by wastewater treatment plants in the process of nitrogen removal. In this study, simultaneous shortcut nitrification and denitrification (SND) was achieved in the hybrid membrane aerated biofilm reactor (H-MBfR) for treating low COD/N ratio (∼x223C 4: 1) wastewater. The effects of the aeration pressure and the influent COD/N ratio in H-MBfR were investigated and further optimized by the response surface methodology (RSM). By controlling the dissolved oxygen to achieve SND, the removal efficiencies of NH4+-N, COD and TN of low COD/N ratio wastewater reached maximum values of 95.52%, 96.61% and 72.23%, respectively. Microbial community analysis showed that the influent COD/N ratio had an obvious influence on the microbial community structure. In particular, ammonia oxidizing bacteria (AOB) and denitrifying bacteria had a good commensalism when the COD/N ratio was 4.3. Compared to control reactor, the analysis of membrane bio-fouling showed that H-MBfR has a lower amount of extracellular polymeric substance (EPS) on membrane and a low concentration of MLSS in bulk liquid, which is helpful for the longer-term operation of H-MBfR.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call