Abstract

This paper presents a new optimization approach for the design of prestressed concrete beams. The prestressing tendon is modeled as a chain of linear segments that transfer point forces to the concrete domain according to the tendon’s angles. The concrete beam is modeled as a discretized continuum following density-based approaches to topology optimization. The shape of the tendon and the topology of the surrounding concrete are optimized simultaneously within a single problem formulation. A special filtering technique is developed in order to ensure that the tendon is covered by concrete, thus shape and topological variables are tightly coupled. Several test cases demonstrate the applicability of the proposed optimization procedure. The deformation of the optimized designs due to external loads is counteracted by the deformation due to prestressing, hence by tuning the force in the tendon the total deformation can approach zero. Consequently, the beams exhibit a compression-only response meaning that the common goal of prestressed concrete design is achieved.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.