Abstract
A solid phase extraction method for simultaneous preconcentration and separation of trace amounts of copper, cobalt and silver in different samples, using a column packed with modified Amberlyst®15 resin is developed. Amberlyst®15 resin was modified with 5-(4-dimethylaminobenzylidene)rhodanine and then the modified resin was used as a support material for the solid phase extraction and preconcentration of Cu(II), Co(II) and Ag(I) ions from aqueous solution in the pH range 3.5–4.5. The adsorbed metal ions on the column were quantitatively eluted with a 7% thiourea solution prepared in 2 mol L−1 HNO3, which were detected by flame atomic absorption spectrometry. The effects of analytical parameters including pH of the solution, eluent type, flow rate of samples, eluent and matrix ions were investigated for optimization of the presented procedure. The detection limits were 2.1, 0.9 and 0.9 ng mL−1 for Cu(II), Co(II) and Ag(I) ions, respectively based on the three times the standard deviations of the blanks. The preconcentration factor was 112.5. The calibration graphs were obtained in the ranges of 0.05 to 10.0, 0.03 to 13.0 and 0.04 to 9.0 µg mL−1 for Cu(II), Co(II) and Ag(I) ions concentrations, respectively. Relative standard deviations (n = 7) for Cu(II), Co(II) and Ag(I) ions were found ±2.5 %, ±0.84% and ±3.8% respectively. The method was applied to the determination of mentioned ions in well water, waste water and lettuce sample.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Environmental Analytical Chemistry
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.