Abstract

Simultaneous temperature and strain sensing has been demonstrated for the first time to our knowledge by using forward Brillouin scattering (FBS) in a highly nonlinear fiber (HNLF). It is based on different responses of radial acoustic modes R0,m and torsional-radial acoustic modes TR2,m to the temperature and strain. High-order acoustic modes with large FBS gain in an HNLF are chosen to improve the sensitivity. To reduce the measurement error, a method to select the best mode combination with the lowest measurement errors is proposed and demonstrated by both simulation and experiment. Three mode combinations have been used for both temperature and strain sensing, and by using the mode combination (R0,18, TR2,29), the lowest temperature and strain errors of 0.12°C/39 µɛ have been achieved. Compared with sensors using backward Brillouin scattering (BBS), the proposed scheme only requires frequency measurement around 1 GHz, which is cost-effective without the need for a ∼10-GHz microwave source. Moreover, the accuracy is enhanced since the FBS resonance frequency and spectrum linewidth are much smaller than those of BBS.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call