Abstract

Thermal and pressure stability of Li-ion batteries (LiB) are the most important parameters for safety. In abuse operating conditions, the rapid increase of temperature and pressure can cause the appearance of hot-spots, which may lead to an increasing degradation rate or even to the battery’s explosion and/or combustion. A sensing network of fiber Bragg gratings is attached to the surface of a prismatic LiB to monitor its temperature and bi-directional strain variations through normal charge (0.70 C) and two different discharge rates (1.32 C and 5.77 C) in the x- and y-directions. More significant variations are registered when the LiB operates in abnormal conditions. A maximum temperature variation of 27.52 ± 0.13 °C is detected by the sensors located close to the positive electrode side. Regarding strain and consequent length variations, maximum values of 593.58 ± 0.01 µε and 51.05 ± 0.05 µm are respectively obtained by the sensors placed on the y-direction. The sensing network presented can be a solution for the real-time monitoring, multipoint and in operando temperature and bi-directional strain variations in the LiBs, promoting their safety.

Highlights

  • Lithium-ion batteries (LiB) are extensively used as power sources for a wide range of electronic devices such as smartphones and laptops, ensuring optimized conditions in the perspective of power, energy, long cycle-life, and slow self-discharge [1,2]

  • The temperature variations registered by the fiber Bragg gratings (FBG) sensors placed on the two sides of the battery are presented in Figures 2 and 3

  • The ratio of the battery was subjected to abnormal operating conditions, as fast discharge and operating below the dimensions is 2.87, dividing the longitudinaland by strain the transversal measured over the cut-off voltage, it is whereas evident that higher temperature variationsvariation occur, which are promoted higher discharge rate, a ratio of

Read more

Summary

Introduction

Lithium-ion batteries (LiB) are extensively used as power sources for a wide range of electronic devices such as smartphones and laptops, ensuring optimized conditions in the perspective of power, energy, long cycle-life, and slow self-discharge [1,2]. The induced strain can be a question that affects the LiB stability and safety, making it the principal cause of material cracking and other forms of performance degradation [3]. Analogous to other electrochemical energy storage systems, the chemical compositions of the active materials change under the charge/discharge processes, which induces strains in electrode particles and causes changes in LiB volume. The aim of thickness reduction of smartphones can be a problem for the users, because these new designs of the smartphone do not integrate a dually protective device which relieves at a set pressure, avoiding the overpressure of the LiB. LiB companies pursue higher energy density and thinner devices at the cost of safety, which moves against the inherently safer design of a commercial LiB [4]

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.