Abstract

AbstractEarthquake focal mechanisms present information on fault plane and stress direction, which is crucial for understanding tectonics and seismicity. Source focal mechanisms of small earthquakes are often difficult to determine from waveform modeling but feasible to infer from initial polarities. Here, we employ a state-of-the-art neural network infused with an attention mechanism to simultaneously pick arrivals and determine the first-motion polarity. The model is trained and tested with data from southern California. Compared with polarity inference with manual picks in the catalog, predicted polarity inference can help obtain more focal mechanism solutions in southern California. We test this model with data from different regions and observe high generalizability. The predicted arrival and polarity data are consistent with the labeled arrival and polarity data in Japan. The average-picking error is 0.04 s, and the accuracy of polarity classification is 99%. We infer the focal mechanisms from the predicted polarity in Oklahoma. The derived focal mechanisms are consistent with referencing focal mechanisms. This method allows routinely obtaining arrival and polarity data, and deriving focal mechanism solutions for events.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.