Abstract

In bioacoustics, automatic animal voice detection and recognition from audio recordings is an emerging topic for animal preservation. Our research focuses on bird bioacoustics, where the goal is to segment bird syllables from the recording and predict the bird species for the syllables. Traditional methods for this task addresses the segmentation and species prediction separately, leading to propagated errors. This work presents a new approach that performs simultaneous segmentation and classification of bird species using a Convolutional Neural Network (CNN) with encoder-decoder architecture. Experimental results on bird recordings show significant improvement compared to recent state-of-the-art methods for both segmentation and species classification.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.