Abstract

The reduced level of system inertia in low-carbon power grids increases the need for alternative frequency services. However, simultaneously optimising the provision of these services in the scheduling process, subject to significant uncertainty, is a complex task given the challenge of linking the steady-state optimisation with frequency dynamics. This paper proposes a novel frequency-constrained Stochastic Unit Commitment (SUC) model which, for the first time, co-optimises energy production along with the provision of synchronised and synthetic inertia, Enhanced Frequency Response (EFR), Primary Frequency Response (PFR) and a dynamically-reduced largest power infeed. The contribution of load damping is modelled through a linear inner approximation. The effectiveness of the proposed model is demonstrated through several case studies for Great Britain's 2030 power system, which highlight the synergies and conflicts among alternative frequency services, as well as the significant economic savings and carbon reduction achieved by simultaneously optimising all these services.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.