Abstract
Molecular self-assembly primarily occurs in solution. To better understand this process, techniques capable of probing the solvated state are consequently required. Small-angle scattering (SAS) has a proven ability to detect and characterize solutions, but it is rarely applied to more complex assembly shapes. Here, small-angle X-ray and neutron scattering are applied to observe toroidal assemblies in solution. Combined analysis confirms that the toroids have a core-shell structure, with a π-conjugated core and an alkyl shell into which solvent penetrates. The dimensions determined by SAS agree well with those obtained by (dried-state) atomic force microscopy. Increasing the number of naphthalene units in the molecular building block yields greater rigidity, as evidenced by a larger toroid and a reduction in solvent penetration into the shell. The detailed structural analysis demonstrates the applicability of SAS to monitor complex solution-based self-assembly.
Accepted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.