Abstract
The present investigation was aimed towards pretreatment optimization of corncob to maximize cellulose and hemicellulose recovery, followed by substrate selection for holocellulase production using psychrotolerant Aspergillus niger SH3. Dilute alkali pretreatment (1.5% NaOH) resulted in higher recovery of cellulose (59.66%) and hemicellulose (28.34%) from corncob, while corn stover proved to be the best substrate for holocellulase production. Further, saccharification was optimized by Box-Behnken design to select the suitable conditions for maximum sugar release from pretreated corncob. The optimum conditions for maximum sugar release were 8% (w/v) substrate loading, 11 FPU/gds enzyme loading at temperature 38 °C and pH 3.0 which resulted in 114.5% higher sugar yield (912 mg/gds of pretreated biomass) as compared with un-optimized conditions (425.35 mg/gds). Theoretical yield of 48.8% ethanol was achieved through simultaneous saccharification and fermentation (SSF) using pretreated corncob. This study illustrates the potential of different corn residues as a promising substrate for bioethanol production.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.