Abstract

Branched DNA (bDNA) assays to quantify human immunodeficiency virus type 1 (HIV-1) and hepatitis C virus (HCV) consist of three distinct steps, including sample processing, hybridization, and detection, and utilize the System 340 platform for plate incubation and washing. Sample processing differs: HIV-1 from 1 ml of plasma is concentrated by high-speed centrifugation, whereas HCV plasma or serum samples are used without concentration. The first step of hybridization involves viral lysis at 63 degrees C: HIV-1 is performed in a heat block, whereas HCV is performed in System 340. The remaining hybridization and detection steps are similar for HIV-1 and HCV and executed on System 340. In the present study, the HIV-1 bDNA assay was adapted for viral lysis in the System 340 platform. The adaptation, test method 2, includes a 20-s vortex of concentrated viral pellet and lysis working solution, transfer of viral lysate to the 96-well capture plate, and transfer to System 340 programmed for HCV assay specifications. With test method 2, specificity and quantification were within assay specifications. HCV bDNA methodology remains unchanged. Hence, an HIV-1 and an HCV bDNA can be run simultaneously on System 340. With simultaneous testing, laboratories can run full plates, as well as combinations of full and partial plates. Also, simultaneous HIV-1 and HCV bDNA permits labor consolidation and improved workflow while maintaining multitasking and rapid patient result turnaround.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.