Abstract

Underwater images are generally of low quality, limiting the performance of subsequent perceptual tasks, such as underwater object detection and recognition. However, only a few methods can improve the quality of underwater images by simultaneously restoring and super-resolving underwater images. In this paper, we propose an end-to-end trainable model based on generative adversarial networks (GANs) called Simultaneous Restoration and Super-Resolution GAN (SRSRGAN) to obtain clear super-resolution underwater images automatically. In particular, our model leverages a cascaded architecture with two stages of carefully designed generative adversarial networks to restore and super-resolve corrupted underwater images in a coarse-to-fine manner. The major advantages of SRSRGAN are twofold. First, it is a unified solution that can simultaneously restore and super-resolve images. Second, SRSRGAN is not limited by the prior experience of the types and levels of underwater degraded images but can perform the inference using only observed corrupted images. These two advantages enable SRSRGAN to enjoy better flexibility and higher practicability in realistic underwater scenarios. Extensive experimental results demonstrate the superiority of SRSRGAN in underwater image restoration, super-resolution, and simultaneous restoration and super-resolution.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.