Abstract

The simultaneous removal of phenol and ammonium using heterotrophic nitrifying-denitrifying bacterium Serratia sp. LJ-1 was investigated. The maximum removal rates of ammonium nitrogen and phenol were 1.08 ± 0.05 and 2.14 ± 0.08 mg L−1 h−1, respectively. The ammonium oxidation had much higher tolerance to phenol toxicity than that of the autotrophic nitrifying bacteria. The increase in phenol concentration led to an increase in ammonium oxidation rate under the phenol concentration of 600 mg L−1. The increase in ammonium concentration caused an increase in phenol biodegradation rate under the ammonium nitrogen concentration of 150 mg L−1. Maximum rates of phenol biodegradation and total nitrogen removal in the treatments with nitrification metabolite (nitrate or nitrite) as the sole nitrogen source were more than 30 % lower than those of the treatment with ammonium as the sole nitrogen source. Ammonium was removed through nitrification and subsequent aerobic denitrification while phenol was biodegraded through the ortho-cleavage pathway and subsequently mineralized. Since phenol often coexists with nitrogen pollutants, these findings have significant environmental implications in terms of the simultaneous removal of these contaminants.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.