Abstract

Attempts were made for removing ammonia from synthetic wastewater under the presence of phenol, which is inhibitory to nitrification, by using a single-stage activated sludge process with cross-flow filtration. Activated sludge biomass which had been acclimated with phenol for over 15 years was used for the inoculum, and synthetic wastewater was continuously supplied to the process retaining biomass at 8000 mg VSS l −1. Phenol was completely removed, and ammonia was simultaneously nitrified to nitrate; nitrification rate reached 200 mg N l −1 d −1 when phenol was removed at a rate up to 300 mg l −1 d −1. It was observed that 0–13% of the ammonia was removed via denitrification. Intermittent aeration enhanced the denitrification rate to 160 mg N l −1 d −1 by utilizing phenol, and approximately 24% of the denitrified nitrogen was recovered as nitrous oxide. Methanol, which is the most commonly used electron donor in conventional nitrogen removal processes, did not enhance the denitrification rate of the phenol-acclimated activated sludge used in this study, however phenol did. The results suggest that this process potentially works as a space- and energy-saving nitrogen removal process by utilizing substances inhibitory to nitrifiers as electron donors for denitrification.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.