Abstract

para-arsanilic acid (p-ASA), as a major phenylarsonic feed additive, was used annually in many countries. Once it enters the water environment, p-ASA would be transformed into hypertoxic inorganic arsenic species, causing severe arsenic pollution. In this study, magnetic copper ferrite (CuFe2O4) was applied to activate peroxymonosulfate (PMS) for p-ASA removal and synchronous control of the released inorganic arsenic species. Results showed that CuFe2O4/PMS system presented favorable oxidation ability and close to 85% of 10 mg/L p-ASA was eliminated under the condition of simultaneous dosing 0.2 g/L CuFe2O4 and 1 mM PMS. The rapid decomposition of p-ASA resulted from homogeneous PMS oxidation and the attack of reactive oxygen species (i.e., SO4−, HO and O2−), which was involved the heterogeneous PMS activation through the cycles between Fe(II)/Fe(III) and Cu(II)/Cu(I). Meanwhile, the released inorganic arsenic species during p-ASA degradation were found to be controllable via the adsorption on CuFe2O4 surface and metal hydroxyl groups played the crucial role. CuFe2O4/PMS system exhibited the stable and efficient performance within the broad range of pH 3.0–11.0. The existence of common anions (Cl−, NO3−, HCO3−, SO42−) and humic acid presented the slight inhibition for p-ASA degradation. The reduction of initial p-ASA concentration favored the p-ASA removal. Besides, the catalyst retained a favorable reactivity and stability even after four successive cycles and almost no metal leaching was observed. The rational degradation pathway was mainly involved in the cleavage of AsC bond, oxidation of amino group, substitution and oxidation of hydroxyl group. The transformation of arsenic species could be divided into the release of inorganic arsenic species, the oxidation of As(III) into As(V) and the adsorption of As(V) by CuFe2O4.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call