Abstract

Industrial wastewater discharges often contain high levels of organic matter and nutrients, which can lead to eutrophication and constitute a serious hazard to receiving waters and aquatic life. The purpose of this study was to examine the efficacy of using a sequencing batch reactor (SBR) to treat high-strength organic wastewater for the removal of both chemical oxygen demand (COD) and nutrients (nitrogen and phosphorus). At a constant COD concentration of approximately 1000 mg/L, the effects of cycle time (3 and 9 h) and various C:N:P ratios (100:5:2, 100:5:1, 100:10:1, and 100:10:2) were investigated using four identical SBRs (R1, R2, R3, and R4). According to experimental data, a significant high removal, i.e., 90%, 98.5%, and 84.8%, was observed for COD, NH3-N, and PO43−-P, respectively, when C:N:P was 100:5:1, at a cycle time of 3 h. Additionally, when cycle time was increased to 9 h, the highest levels of COD removal (95.7%), NH3-N removal (99.6%), and PO43−-P removal (90.31%) were accomplished. Also, in order to comprehend the primary impacts and interactions among the various process variables, the data was statistically examined using analysis of variance (ANOVA) at a 95% confidence level, which revealed that the interaction of cycle time and C/N ratio, cycle time and C/P ratio is significant for COD and NH3-N removal. However, the same interaction was found to be insignificant for PO43−-P removal. Sludge volume index (SVI30 and SVI10) and sludge settleability were studied, and the best settling was found in R3 with SVI30 of 55 mL/g after 9 h. Further evidence that flocs were present in reactors came from an average ratio of SVI 30/SVI 10 = 0.70 after 9 h and 0.60 after 3 h.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.