Abstract

The simultaneous and efficient removal of various heavy metals from wastewater to satisfy the requirements of zero discharge has been a research hotspot and difficult point. In the laboratory scale (0.5 L), the biocathode microbial electrolytic cells (BCMECs) were constructed with the pre-screened heavy metal-tolerant electroactive bacterial, mainly of the Sphingomonas, Azospira and Cupriavidus. The BCMECs system showed a more satisfactory removal effect for multiple heavy metals and organic pollutants. At the auxiliary voltage of 0.9 V and initial concentration of 20 mg L−1, the removal efficiency of Cu, Pb, Zn, Cd and COD were 98.76 ± 0.32%, 98.01 ± 0.76%, 73.58 ± 4.83%, 84.39 ± 5.95%, 77.55 ± 1.51%, respectively. It was found by various characterization techniques (CV, EIS, XPS et al.) that the constructed biocathode has the function of electrocatalytic reduction of heavy metal ions in a micro-aerobic, film-free environment. The positive shift (0.030–0.229 V) of the initial potential for heavy metal reduction and the absence of a significant increase (< 10 Ω) in the interfacial resistance indicated a reduction in the total free energy of the reduction reaction, which promotes the reaction and improves the efficiency of heavy metal removal. Bacterial community analysis revealed that the Proteobacteria has been dominant in different heavy metal environments. With the increase of heavy metal concentration, Sphingomonas, Azospira and Cupriavidus showed stronger tolerance and became the dominant genus. This study emphasized the important performance of biocathodes and the effective treatment of heavy metal wastewaters by BCMECs and provided a reasonable way for industrial and mining enterprises to innovate the water treatment process.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call