Abstract
The mixed contamination of environmental matrices by antibacterial agents and heavy metals has attracted much attention worldwide due to the complex nature of their environmental interactions and their potential toxicity. In this work, green synthesized bimetallic iron/nickel nanoparticles (Fe/Ni NPs) was used to simultaneously remove triclosan (TCS) and copper (Cu (II)) under optimal experimental conditions with removal efficiencies of 75.8 and 44.1% respectively. However, in a mixed contaminant system the removal efficiencies of TCS and Cu (II) were lower than when TCS (85.8%) and Cu (II) (52.5%) were removed separately, suggesting that there was competitive relationship between the two contaminants and Fe/Ni NPs used for remediation. SEM-EDS, XRD and FTIR all indicated that both TCS and Cu (II) were adsorbed onto Fe/Ni NPs. Furthermore, while XPS showed that Cu (II) was reduced to Cu0, GC–MS analysis showed that TCS also underwent degradation with 2,7/2,8-Cl2DD as the major intermediate. The adsorption of both contaminants fit well a pseudo second order kinetic model (R2>0.998) and the Freundlich isotherm (R2>0.905). Whereas the reduction kinetics obeyed a pseudo first order model. Thus, overall the removal of TCS and Cu (II) involved a combination of both adsorption and reduction. Finally, a removal mechanism for triclosan and Cu (II) was proposed. Overall, Fe/Ni NPs have the potential to practically coinstantaneously remove both TCS and Cu (II) from aqueous solution under a wide range of conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.