Abstract

Abies bornmulleriana cone was used to investigate its biosorption efficiency and capacity of Pb2+, Cu2+, Cd2+, Co2+, and Ni2+ heavy metal ions in a quinary system. The mechanism of multi-metal removal was illustrated in terms of FTIR results. Electrophoretic mobilities of the biosorbents were determined to access the information about the competitive biosorption. BET surface area and pore volume of the biosorbents before and after the biosorption were defined to be (5.05 m2 g-1 and 0.0018 cm3 g-1) and (0.97 m2 g-1 and 0.00032 cm3 g-1), respectively. The average pore width of the biosorbent before and after the biosorption was calculated as 9.34 and 13.04 Å, respectively. The pseudo-first-order model and the pseudo-second-order model were applied to analyze the experimental data. Experimental data have been evaluated according to the Langmuir, Freundlich, Temkin, and Dubinin-Radushkevich isotherms. The maximum biosorption efficiency and capacity for Pb2+, Cu2+, Cd2+, Ni2+, and Co2+ ions were defined as (85.4, 56.4, 35.4, 21.7 and 18.9%) and (8.5, 5.6, 3.5, 2.2 and 1.9 mg g-1), respectively. The selectivity of heavy metal ions resulted in the magnitude order of Pb2+ > Cu2+ > Cd2+ > Ni2+ > Co2+.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.