Abstract

TiO2 nanoparticles deposited on activated carbon (TiO2–NP–AC) was prepared and characterized by XRD and SEM analysis. Subsequently, simultaneous ultrasound‐assisted adsorption of Cu2+ and Cr3+ ions onto TiO2‐NPs‐AC after complexation via eriochrome cyanine R (ECR) has been investigated with UV–Vis and FAA spectrophotometer. Spectra overlapping of the ECR‐Cu and ECR‐Cr complex was resolve by derivative spectrophotometric technique. The effects of various parameters such as initial Cu2+ (A) and Cr3+ (B) ions concentrations, TiO2‐NPs‐AC mass (C), sonication time (D) and pH (E) on the removal percentage were investigated and optimized by central composite design (CCD). The optimize conditions were set as: 4.21 min, 0.019 mg, 20.02 and 13.22 mg L−1 and 6.63 for sonication time, TiO2–NP–AC mass, initial Cr3+ and Cu2+ ions concentration and pH, respectively. The experimental equilibrium data fitting to Langmuir, Freundlich, Temkin and Dubinin–Radushkevich models show that the Langmuir model is a good and suitable model for evaluation and the actual behavior of adsorption process and maximum adsorption capacity of 105.26 and 93.46 mg g−1 were obtained for Cu2+ and Cr3+ ions, respectively. Kinetic evaluation of experimental data showed that the adsorption processes followed well pseudo second order and intraparticle diffusion models.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.