Abstract
We investigate the removal of methyl orange (MO) and methylene blue (MB) from aqueous solution by montmorillonite-pillared graphene oxide (MGO). Experimental conditions were used that evaluate the potential of MGO in removing anionic and cationic dyes in single and binary systems, and we investigated the uptake capacity of MGO toward organic dye as a function of different pH, adsorbent dosage, temperature, and adsorption time. In the single system, the Langmuir and Freundlich adsorption models were used to describe the equilibrium isotherm and calculate the isotherm constants. Moreover, the pseudo-first-order and pseudo-second-order kinetic models were applied to study the mechanism of MGO adsorbing dyes. Thermodynamic studies demonstrated that the adsorption of MO and MB onto MGO was feasible and spontaneous. In the binary system, the adsorption capacities of MO and MB by MGO were dramatically higher than those in a single system. Therefore, through the recorded adsorption results under different conditi...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.