Abstract

Simultaneous removal of carbon and nutrients (CNP) in a single bioreactor is highly significant for energy consumption and control of reactor volume. Basically, nutrients removal is dependant to the ratio of biochemical oxygen demand to chemical oxygen demand (BOD5/COD). Thus, in this study the treatment of an industrial estate wastewater with low BOD5/COD ratio in an up-flow aerobic/anoxic sludge bed (UAASB) bioreactor, with an intermittent regime in aeration and discharge, was investigated. Hydraulic retention time (HRT) of 12–36 h and aeration time of 40–60 min/h were selected as the operating variables to analyze, optimize and model the process. In order to analyze the process, 13 dependent parameters as the process responses were studied. From the results, it was found, increasing HRT decreases the CNP removal efficiencies. However, by increasing the BOD5 fraction of the feed, the total COD (TCOD), slowly biodegradable COD (sbCOD), readily biodegradable COD (rbCOD), total nitrogen (TN), and total phosphorus (TP) removal efficiencies were remarkably increased. Population of heterotrophic, nitrifying and denitrifying bacteria showed good agreement with the results obtained for TCOD and TN removal. The optimum conditions were determined as 12–15 h and 40–60 min/h for HRT and aeration time respectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call