Abstract

Vanadium (V) and chromium (VI) are the main metals found in vanadium containing wastewater with large amount and great toxicity. In present study, reduction of V(V) and Cr(VI) together with electricity generation is successfully achieved in double chamber microbial fuel cells (MFCs) by employing vanadium containing wastewater as the cathodic electron acceptor. The V(V) and Cr(VI) reduction efficiencies for 240h operation approach up to 67.9±3.1% and 75.4±1.9%, respectively, with a maximum power density of 970.2±20.6mWm−2. The power output is enhanced, compared with the results from MFCs with V(V) as the sole electron acceptor, while the decrease of the cathode efficiency caused by deposits from Cr(VI) reduction process can also be mitigated. After reduction, chromium is mainly deposited on the cathode surface in the form of Cr(III), while most of vanadium can be precipitated from the exhausted catholyte by adjusting pH, thus treating vanadium containing wastewater successfully with energy harvest based on MFC technology. The operating principles of MFCs with two different electron acceptors are also reported for the first time.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.